An extension of sub-fractional Brownian motion
نویسندگان
چکیده
منابع مشابه
Ruin Probability for Generalized Φ-sub-gaussian Fractional Brownian Motion
for various types of risk process X = (X(t), t ≥ 0) and functions f(t). The similar problem of finding the buffer overflow probability appears in the queuing theory for different communication network models. The tasks of such type were solved for many types of processes, including Gaussian ones and aforementioned FBM (see, for example, Norros [1], Michna [2], Baldi and Pacchiarotti [3], etc.)....
متن کاملAn Extension of Bifractional Brownian Motion
In this paper we introduce and study a self-similar Gaussian process that is the bifractional Brownian motion BH,K with parameters H ∈ (0, 1) and K ∈ (1, 2) such that HK ∈ (0, 1). A remarkable difference between the case K ∈ (0, 1) and our situation is that this process is a semimartingale when 2HK = 1.
متن کاملLacunary Fractional Brownian Motion
In this paper, a new class of Gaussian field is introduced called Lacunary Fractional Brownian Motion. Surprisingly we show that usually their tangent fields are not unique at every point. We also investigate the smoothness of the sample paths of Lacunary Fractional Brownian Motion using wavelet analysis.
متن کاملSimulation of fractional Brownian motion
Preface In recent years, there has been great interest in the simulation of long-range dependent processes, in particular fractional Brownian motion. Motivated by applications in communications engineering, I wrote my master's thesis on the subject in 2002. Since many people turned out to be interested in various aspects of fractional Brownian motion, I decided to update my thesis and make it p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Publicacions Matemàtiques
سال: 2013
ISSN: 0214-1493
DOI: 10.5565/publmat_57213_11